Determining Language from a Probabilistic
Representation of Characters

Kaggle Teamname: Lazy Sloths

Matthew Cooke Yimiao Ou Lino Toran Jenner
matthew.cooke2 @mail.mcgill.ca yimiao.ou@mail.mcgill.ca lino.toranjenner @mail.mcgill.ca
260553365 260144236 260793554

I. INTRODUCTION

In machine learning, we use large scale data-sets to train
classifier in an attempt to predict the outcomes of related
novel events. In this project, we were given a list of over
200,000 data sample of text classified in one of 5 languages:
Slovak, German, French, Polish and Spanish. We were also
given unclassified strings of random characters probabilisti-
cally sampled from these languages. Our goal was to train
different, manually implemented machine learning classifiers
to solve this language classification task with the highest
possible accuracy. We trained 5 different classifiers: Two Naive
Bayes, k-Nearest Neighbour, Support Vector Machine, and a
Decision Tree. Our best classification accuracy on the public
leaderboards, using Naive Bayes with Laplace smoothing was
78.96%.

II. RELATED WORK

The classification of text has been a problem in machine
learning for many years. As one of the classic topic in natural
language processing, text classification is widely used in
areas like spam email filtering [1], document categorization
[2], sentiment analysis [3] and web searching [4]. Text
classification task normally involves the following steps: 1)
document preprocessing, 2) feature extraction and selection,
3) model selection and training, 4) classifier testing. These
different steps have been the major focuses of many researches
[5]-[7]. For model selection and training, the best working
approaches feature a combination of classifiers such as Naive
Bayes, Decision Tree, Neural Network and Support Vector
Machine [8]-[10]. However, the scope of text classification
is vast; there are single-label or multi-label approaches,
Hard vs Ranking Categorization, and other design decision
to consider. [7] There are hundreds of applications of text
classification, one of which is automatic language detection,
as described in this report. Other approaches to language
classification focus mainly on the occurrence of words [11],
however this can be generalized relatively well to individual
characters. Recently, character-level text classification has
been the focus of many studies [12]-[14].

III. PROBLEM REPRESENTATION

The task of this project was language classification. While
the data of the training set consisted of full sentences, the
data of the test set did not. Instead, the test set contained only
characters (instead of words) that have been sampled from
sentences using a standard probabilistic distribution. These
characters were sampled from sentences of the same type as
in the training set. Because of this sampling process, character
transitions and similar other aspects of language structure were
lost. To take this into consideration, our feature selection took
place on a character level. After removing space and end-of-
line characters from the training set, we used the SciPy [15]
CountVectorizer which creates a vector representing how often
each character occurs in a sentence. Using this approach we
get a vector consisting of 598 entries (one for each character
that occurred more than once in the whole training set) for each
training sentence. We made sure to also account for numbers
and punctuation marks as these seemed to provide meaningful
information (see discussion).

Once these vectors are built, the data is ready to be
classified.

IV. ALGORITHM SELECTION AND IMPLEMENTATION (FOR
EACH OF THE CATEGORIES ABOVE)

A. Feature selection

After reading in the sentences we shuffled them to avoid any
possible biases they might have. We then created the feature
representations as described above. Once that was done, we
split the 276517 sentences into two parts: the first 250000
made up the training set and the last 26517 sentences made
up our development set on which we later calculated the
validation error and tuned our hyperparameters. We used these
training and development sets for all three machine learning
classifiers we used.

B. Part I - Naive Bayes

For part 1 of the project, we decided to implement Naive
Bayes algorithm. Naive Bayes uses the Bayes rule to output a
classification for a sample with We had to calculate the We first
counted the occurences of each of the classes in the training
set and devided by the total number of sentences to estimate
the priors of each of the classes (P(y)). We then counted how



often each character character appeared in sentences of each
particular class. We divided this number by the total amount
of characters per class to get an estimate of how representative
each character is for each class (P(Xly)). By doing this, we got
a matrix with the two dimensions class and character. In each
cell we store the probability of finding a certain character if
the sentence is from this class.

To prevent the numbers of getting too small and creating un-
derflow problems, as well as to facilitate computation instead
of storing the probabilites directly, we store natural logarithm
of both of these probabilities.

To classify a sentence, we first create its feature vector. We
then multiply this feature vector (using the dot product) with
our probability matrix to effectivly sum up all the individual
character probabilites for all of the classes, returning one sum
per class. After this is done, we add the logarithmized class
priors to these sums to get the final probabilities. We then find
the biggest of the five values and return the corresponding
class.

Since characters that occur in the development or test
sets might have not been obeserved in the training set for
certain classes we also apply laplace smoothing by adding one
occurence to each character and 598 occurances (in our case)
to the total character occurances per class before calculating
the probabilities.

C. Part 2 - Decision Tree

In part 2 of the project, we were tasked with implementing
a non-linear classifier. We implemented a 1-nearest neighbour
classifier by adding each sentence to a vector and mapping
these vectors in their respective 598 dimensional space. We
would then compare all of the test sentences to each of the
training vectors. The closest training vector would assign its
class to the test sentence. Although functional, the way it was
coded, this method was much too computationally intensive,
computing distance from 200,000+ training vectors for all
100,000+ test vectors and we were not able to let it finish
executing. We therefore decided to refocus on a decision tree
based approach.

For the second part of the project we wanted to see if
changing our feature selection method would still lead to
good results. We therefore didn’t use the CountVectorizer
but a manually implemented feature selection process for
our decision tree. While still focusing on characters, we
effectively described the training sentences by the sets of
characters they contained. That is to say we looked only at
which characters appear in a sentence and not how often they
occur. For this classifier, we also removed numeric characters.

As a critical part of machine learning, feature selection
is always performed before training by most algorithms to
improve the quality and efficiency of modeling.

In contrast, decision tree classifiers bypass this preprocess
step by incorporating a built-in feature selection mechanism
in the training phase.

Decision trees are built in a top-down fashion. At each
node they consider all features and select the feature that
best splits the node into purest possible classes, which means
splitting the node with the feature that achieves the highest
information gain. Therefore, the features used to classify
languages in our decision tree are all the different symbols
appeared in the training dataset. Since numbers provide no
useful information for language prediction we remove them
from the set of features before training the tree. Totally, there
are 665 unique features for splitting a decision tree.

The training dataset was preprocessed as discussed above,
resulting in a list of symbols without repeat. The correct class
label was then attached to the end of the list. We chose a
simple validation set approach and used our training set to train
the tree and the development set to calculate our validation
accuracy.

In our decision tree model, the structure of the tree
is recorded as a dictionary where each node(key of the
dictionary) denotes the best feature that splits data at that
node. Each node can either have a leaf (class label) or a
subtree as a child.

The implementation details are as follows. Given a set of
labeled training dataset: 1. When all samples in the dataset
belong to the same class create a leaf with the class label and
exit. Otherwise, do following procedures: 2. Iterate through
the whole set of features, each time split the samples of the
dataset into two subsets based on the presence or absence
of each feature in the samples. Calculate the entropies and
choose the feature that gives the highest information gain
as the best feature to split data on. 3. Split the dataset
according to the best feature. Delete this best feature from the
features set before executing the next run of data splitting.
4. Calculate the number of subtrees for the best feature(key
of the subtree) based on whether the best feature is present
in all samples(one subtree with key = 1) or absent from all
samples(one subtree with key = 0) or is present in some
samples and absent from others(two subtrees with key = 1
and key = 0 respectively). Recursively repeat steps 2 to 4 on
each subset of the training dataset will eventually produce a
full decision tree.

Since the training dataset is very large and contains hundreds
of features, generating a decision tree with a regular laptop
will take approximately 3 hours. It thus will be very time-
consuming to generate a new tree for prediction every time.
Therefore, we stored tree dictionary in the hard-drive using
the python pickle API which implements binary protocols
for serializing(storing) a Python object structure and de-
serializing (loading) the object when we need it for new
sample prediction. To show that the training process of the
decision tree works, we also implemented a demonstration
mode that uses a significantly reduced amount of training
samples to build the tree. Details on how to run our program
in demonstration mode can be found in the README file.
Alternatively we also upload a pretrained decision tree that
can also be used.



Classifiers training set accuracy (%)
Manual Naive Bayes (part 1) 86.77
Manual Decision Tree (part 2) 98.83
scikit Naive Bayes (alpha = 0.2) 86.80

development set accuracy (%) | kaggle test set accuracy (%)
86.70 78.88
74.60 63.79
86.72 78.93

TABLE 1. Performance of our implemented classifiers on training data, development set and in the kaggle competition. Accuracy

measured in %.

For classification of a new sample, we first create the set
of characters to get the appropriate feature vector.We then
start at the root of the decision tree, traverse down the tree
until reaching a leaf node and assign the class label of that
leaf to the new sample. At each node of the tree, choosing
which branch to traverse down depends on whether the sample
contains the feature that splits that node. A key = 1 implies the
feature is inside the new sample. After iteratively predicting
the class label for each sample in the test dataset, we calculate
the error rates and save the predicted classes of the test set.

D. Part 3 - scikit Naive Bayes

To try how the scikit Naive Bayes compares to our imple-
mentation we tried it out and played with the smoothing. One
thing we tried with good results was setting the soothing a bit
lower than laplace (alpha = 0.2).

V. TESTING AND VALIDATION

We calculated training accuracy and accuracy on a devel-
opment set (part of the training data).

Improvement of results could generally be seen mostly by
changing the feature selection process. Our first implemen-
tation of feature selection ignored any punctuation in the
sentences. Our best classifier using this strategy was a Naive
Bayes algorithm with Laplace smoothing (training accuracy
(ta) 85.45%, development set accuracy (da) 85.49%, public
kaggle leaderboard (ka) 77.16%). After tuning our feature
selection process the scores of the best performing algorithm
on kaggle (Naive Bayes with laplace smoothing) improved to:
ta=86.80%, da=86.72%, ka=78.93% (Table 1).

VI. DISCUSSION

For the algorithms we described in this report, each has its
own advantage and disadvantage. As a popular text classifier,
Naive Bayes is simple to implement and converges quickly.
It performs quite well, doesn’t require a large dataset for
learning to begin and doesn’t overfit easily [16]. However,
it is based on the conditional independence assumption and is
sensitive to parameter optimization. Therefore, choosing which
features to train the classifier affect the model performance.
Similar to Naive Bayes, KNN is also a simple algorithm
to implement and use. It is robust to noisy training data,
doesn’t need a training phase and learn complex model easily.
However, it requires lots of memory to store all the training
data and its test phase is slow, which may the reason that
caused the failure of our KNN classifier in this project to
implement the text classification task efficiently. Furthermore,

KNN is hard to apply to high-dimensional data [17]. SVM
is a very accurate classifier which uses "kernel trick" and is
defined by convex optimization problem, therefore it can be
efficiently implemented. It is not prone to overfitting and it
does a good job at handling missing data. However, SVM is a
binary classifier and could not do multi-class classification.
It also requires lost of memory storage for the data [18].
There are several advantages of using decision trees for solving
classification problems [19]. Firstly, decision trees automat-
ically perform feature selection where the most important
variables within the dataset are the features that used to split
the nodes on the top of the tree. Secondly, decision trees
are non-linear classifiers, therefore we can use them to fit
models without any assumption of linearity of the dataset.
Thirdly, decision trees don’t require parameter normalization
because the “distance” between samples is not used for the
training process. Fourthly, decision trees can deal with noisy
and incomplete data and can be used in ensemble methods
to reduce the variance caused by randomization. Fifthly and
most importantly, the learned function and the decision tree
itself are easy to interpret and explain. However, decision trees
also have some disadvantages: Firstly, the tree output is very
sensitive to alterations in the training data. Because features
of each sample are used to train the tree, a small change in
the input may result in a drastically different tree. Secondly,
building a large tree with few hundreds of features and hundred
thousand of training data will take lots of time and efforts since
information gains are needed to calculate for of each possible
split at each node. Thirdly, decision trees are easily overfit.
Although this can be negated by methods like validation test
and pruning, the application of these methods to a large tree
with hundreds of nodes will be very time-consuming. As can
be seen in the results, it appears that our implemented decision
tree did not do as well as the other classifiers, namely naive
bayes. This has probably to with our feature selection since
we lose information by only using the sets of used characters.
Also, since the training error is really low, it seems that this
model overfit to the training data. This could be avoided in a
later project by including more rigorous pruning of the tree.

Fourthly, the decision tree prediction accuracy is low,
which may be improved by applying ensemble methods such
as random forest at the loss of interpretability. However,
random forest is not suitable for fitting dataset with missing
variables, especially for our training data lots of the samples
contain less than 0.1 of the total variables.




VII. STATEMENT OF CONTRIBUTIONS

All members of our group worked hard on this project.
The whole group helped write the report, make major design
decisions, and write classification code. Specifically, Lino
wrote the Naive Bayes classifiers (parts 1 and 3), worked
on bringing all the code of the team together, the usability
of the python code and parts of the report. Matthew worked
particularily on making kNN and SVM classifiers (which
weren’t used in the final submission), doing code cleanup
and refactoring, and the report: writing, doing research, and
collecting references. Yimiao wrote the decision tree classifier
(part2) as well as parts of the report.

We hereby state that all the work presented in this report is
that of the authors.

REFERENCES

[1] T. A. Meyer and B. Whateley, “Spambayes: Effective
open-source, bayesian based, email classification sys-
tem.,” in CEAS, 2004.

[2] L. M. Manevitz and M. Yousef, “One-class svms for
document classification,” Journal of Machine Learning
Research, vol. 2, no. Dec, pp. 139-154, 2001.

[3] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?:
Sentiment classification using machine learning tech-
niques,” in Proceedings of the ACL-02 conference on
Empirical methods in natural language processing-
Volume 10, Association for Computational Linguistics,
2002, pp. 79-86.

[4] H. Chen, C. Schuffels, and R. Orwig, “Internet catego-
rization and search: A self-organizing approach,” Jour-
nal of visual communication and image representation,
vol. 7, no. 1, pp. 88-102, 1996.

[5] M. K. Dalal and M. A. Zaveri, “Automatic text clas-
sification: A technical review,” International Journal of
Computer Applications, vol. 28, no. 2, pp. 3740, 2011.

[6] A. Khan, B. Baharudin, L. H. Lee, and K. Khan,
“A review of machine learning algorithms for text-
documents classification,” Journal of advances in in-
formation technology, vol. 1, no. 1, pp. 4-20, 2010.

[7] F. Sebastiani, “Machine learning in automated text cat-
egorization,” ACM computing surveys (CSUR), vol. 34,
no. 1, pp. 1-47, 2002.

[8] R. D. Goyal, “Knowledge based neural network for
text classification,” in Granular Computing, 2007. GRC
2007. IEEE International Conference on, IEEE, 2007,
pp. 542-542.

[9] D. Isa, L. H. Lee, V. Kallimani, and R. Rajkumar,

“Text document preprocessing with the bayes formula

for classification using the support vector machine,’

IEEE Transactions on Knowledge and Data engineer-

ing, vol. 20, no. 9, pp. 1264-1272, 2008.

P. Yuan, Y. Chen, H. Jin, and L. Huang, “Msvm-knn:

Combining svm and k-nn for multi-class text classi-

fication,” in Semantic Computing and Systems, 2008.

WSCS’08. IEEE International Workshop on, 1EEE,

2008, pp. 133-140.

[10]

[14]

B. M. Schulze, Automatic language identification us-
ing both n-gram and word information, US Patent
6,167,369, Dec. 2000.

X. Zhang, J. Zhao, and Y. LeCun, “Character-level
convolutional networks for text classification,” in Ad-
vances in neural information processing systems, 2015,
pp. 649-657.

D. Klein, J. Smarr, H. Nguyen, and C. D. Manning,
“Named entity recognition with character-level models,”
in Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4, As-
sociation for Computational Linguistics, 2003, pp. 180—
183.

F. Peng, D. Schuurmans, S. Wang, and V. Keselj, “Lan-
guage independent authorship attribution using charac-
ter level language models,” in Proceedings of the tenth
conference on European chapter of the Association for
Computational Linguistics-Volume 1, Association for
Computational Linguistics, 2003, pp. 267-274.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825-2830,
2011.

A. Ashari, 1. Paryudi, and A. M. Tjoa, “Performance
comparison between naive bayes, decision tree and k-
nearest neighbor in searching alternative design in an
energy simulation tool,” Int. J. Adv. Comput. Sci. Appl,
vol. 4, no. 11, pp. 33-39, 2013.

N. Bhatia et al, “Survey of nearest neighbor tech-
niques,” arXiv preprint arXiv:1007.0085, 2010.

H. Drucker, D. Wu, and V. N. Vapnik, “Support vector
machines for spam categorization,” IEEE Transactions
on Neural networks, vol. 10, no. 5, pp. 1048-1054,
1999.

A. Srivastava, E.-H. Han, V. Kumar, and V. Singh,
“Parallel formulations of decision-tree classification al-
gorithms,” in High Performance Data Mining, Springer,
1999, pp. 237-261.



